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The main achievement in the period May 1,1986 through April 30, 1987 is the
development of computer codes for electronic structure calculations for systems
without any rotational symmetry. At present, these codes are only tested for
atomic systems, but exactly the same technique will be used for solids. This will
then enable us to calculate the effects of spin-orbit coupling on the electronic
structure of solids. 49 themext-paxagraph 11w.ill describe the numerical
techniques which are used. After that detailed results of the investigation of
the carbon atom are given.

When one applies a magnetic field to a solid all rotational symmetry is broken,
unless the field points along a high symmetry direction of the crystal. Therefore
the charge density and the potential appearing in electronic structure calcula-
tions only show translational symmetry. This immediately brings forward the
question how to represent these quantities numerically. Since the effects of
magnetism are usually smaller than the crystal field terms in the potential and
the charge density, these two contributions have to be treated separately. In our
computer programs for bulk solids the crystal field effects are treated in a
standard way by representing them in terms of symmetry adapted spherical harmon-
ics inside the muffin tin spheres and plane waves in the interstitial. The
changes due to magnetic effects are represented on a numerical grid. We choose
our numerical points equally spaced along the primitive translation vectors,
because this will give the best precision for integrating periodic functions.
Recall that a periodic function, which ip not strongly peaked, in one dimension
is best integrated using a trapezoidal -.ie.

We start from a calculation without magnetic fields and obtain self-consistent
energy eigenvalues and wave functions. These serve as a basis for a next calcula-
tion in which we include all external fields. The matrix elements of the external
fields are calculated by transforming the wave functions to the numerical grid
used for representing the potential. The relative error in the numerical calcula-
tion of these matrix elements is not small, but since the elements themselves are
small we only introduce small absolute errors in this procedure. After calculat-
ing the matrix elements the Hamiltonian is diagonalized and new values of the
wave functions are obtained. This procedure is then continued until self-consist-
ency is reached. After that we calculate the total energy and other quantities.
It is very important that one only has to calculate the changes in all quantities
compared to the reference calculation, in order to minimize the numerical errors.

We have tested this procedure in atomic calculations where our reference always
was a spherical, paramagnetic calculation. In this case we solve the full Dirac
equation and make the following extension to the local density approximation. At
every point in space the charge density and spin density are known for the last
iteration. From this we construct locally a majority and a minority density and
calculate the exchange-correlation potentials using the von Barth-Hedin form of
this potential as parametrized by Janak [1]. These potentials are then written as
a Coulomb term and a magnetic term. For the direction of the magnetic field we
then take the local spin direction. Finally, we assume that this magnetic field
couples to the spin only.
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The total energy obtained for Carbon in this procedure can be compared directly
with Hartree-Fock results [2] by assuming that the total energy of our reference
calculation is equal to the value obtained by spherically averaging over all
configurations in the Hartree-Fock calculations ( Figure 1). The restricted and
spin-polarized Hartee-Fock results are almost identical for the one determinant
result. In an earlier calculation, von Barth (3] obtained the total energy of
Carbon for broken symmetry, but his work was not self-consistent. His result was
close to the spin-polarized spherical result (4]. Since in the local density
approximation one also includes correlation, one might expect that a self-
consistent calculation with broken symmetry reduces the total energy even more.
This was indeed found in our calculations, but the real value of the total
energy, as obtained in a configuration interaction calculation, is still lower.
The main error is due to the contribution of 1-2 states, which are important in
the exact result. In local density, these states are pushed away from the nucleus
by the centrifugal forces in the Hamiltonian and the exchange-correlation
potential drops too rapidly to counteract these forces and to bring some 1-2 wave
functions closer to the nucleus.

Next, we investigated the total energy and the induced dipole moment of Carbon in
an electric field. Our calculations show that the Carbon atom wants to align
itself with its orbital angular momentum parallel to the field ( Figure 2). This
is a direct result from the iterations to self-consistency, which show that any
other alignment of the angular momentum gives a higher total energy and a new
charge density which is closer to the preferred alignment. In the aligned
situation we then evaluate the polarizability of the Carbon atom. The number we
find is 1.2 Angstrom3, which is smaller than the experimental number of 1.76
Angstrom 3 . The polarizability is clearly anisotropic, but we can only estimate
the values for directions perpendicular to the angular momentum because of the
alignment of the atom. We estimate that the perpendicular value is around 0.5
Angstrom 3 .

The cause of this discrepancy is exactly the same as that for the total energy,
and also the relative size of the deviation is similar. In both cases the error
is about a factor of 1/3. The electric field gradient couples the p states to the
s states and also to d-like states. The latter type of states are too far
extended from the nucleus in the local density approximation and hence do not
give a large enough contribution to both the total energy and the polarizability.
Note that this situation is different in the case of closed shell atoms, where
the local density approximation gives much better results(51. This shows that the
average extend of the d-like states in the local density approximation is well
represented, but that in cases where the spherical symmetry is broken the
splitting of the d-like states is not well represented. In carbon the d-like
states which are lowered in energy due to the lower symmetry are not pulled in
far enough towards the nucleus.

At present we are investigating the effect of diverging magnetic fields on a
carbon atom. Here we simulate the conditions as seen in the Stern-Gerlach
experiments. Our preliminary results show that the carbon atom develops a dipole
moment in this case. Since there is no counter force due to the magnetic field on
the nucleus ( as there is in an external electric field) this means that there is
a net force on the atom. More quantitative results are on their way.
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Figure 1.

Energy splittings (eV) of the carbon atom in local density (LD) and Hartree-Fock
(HF). In LD a) indicates the energy of a non-spin-polarized, spherical calcula-
tion and this has the same energy as a) in HF, which is the result from an
spherical average of configurations. LD.b is a non-spin-polarized, non-spherical
result, LD.c is spin-polarized, non-spherical after one iteration. LD.d is spin-
polarized, spherical, and LD.e is spin-polarized, non-spherical, self-consistent.
HF.b is obtained in a spin-restricted calculation, while HF.c is a spin-polarized
calculation. HF.d finally is the result of a multi-configuration calculation and
represents the true ground state energy.
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Figure 2.

Orientation of the carbon atom in an external electric field along the z-axis.
The region labeled - indicates an excess of electrons as compared to the spher-
ical average. while the region marked with + denotes less electrons than the
spherical average (and hence a positive charge).
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